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Two new second order schemes are presented for the solution of hyperbolic systems 
in two space dimensions. The first method is a modification of the Lax-Wendreff method 
that dramatically reduces the numerical phase error compared with all other schemes 
that do not use data beyond a nine point lattice. The second scheme is a one parameter 
generalization of the rectangular form of Richtmyer’s method. The scheme is shown 
to be stable (the stability proof is only formal since it is a nonlinear scheme) for all 
symmetric hyperbolic equations. The phase error and allowable time steps arc func- 
tions of the free parameter. At one extreme the parameter can be chosen so as to yield 
maximal allowable time steps but with a phase error that is large compared with other 
second order methods. Alternately we can choose the free parameter so that the phase 
error is smaller than that of the Richtmyer type schemes but at the cost of a smaller 
permissible time step. Numerical experiments with the equations of dynamic elasticiry 
are presented that confirm these conclusions. 

1. INTRODUCTION 

In [7] many second order schemes were considered for the equation 

wt + Aw, + Bw, = 0, :r, 

where A and B are simultaneously symmetrizable, or in divergence free fort? 
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These schemes were compared with respect to stability and phase error properties. 
When we limit the schemes to those that do not use mesh data that extend beyond 
a nine point rectangular lattice then the Leapfrog and Lax-Wendroff methods 
together with a nine point splitting scheme have the smallest phase errors. For 
many of the methods considered a small phase error was coupled with a small 
permissible time step. As an example a family of schemes was introduced that 
generalizes the rotated Richtmyer and Burstein [ll] schemes. As we increase the 
free parameter 01 the phase error decreases but the stability properties of the scheme 
also decrease. In fact except for the rotated Richtmyer scheme all members of 
this family (including the Burstein scheme) are weakly unstable for particular 
choices of the matrices A and B appearing in Eq. (1) even for symmetric hyperbolic 
systems (see [7]). 

In this paper we shall present a modification of the Lax-Wendroff method which 
greatly decreases the phase error without using data beyond a nine point lattice. 
This is of importance for problems where higher order schemes (which must use 
data beyond the nine point lattice) are difficult to use because of curved boundaries. 
We shall also investigate a new family of schemes for stability properties and 
phase errors. The family is linearly stable but requires a small time step and has 
a poor phase representation. However, by considering a nonlinear variation of 
these schemes one can choose the parameter to either decrease the phase error or, 
conversely, increase the time step. In contrast to the Burstein type scheme this 
family appears to be stable for all matrices A and B that can be simultaneously 
symmetrized. However, due to the nonlinearity of the scheme only a formal 
presentation of this stability can be presented together with some numerical results. 

2. IMPROVED LAX-WENDROFF METHOD 

The phase error for a numerical method is defined only when the matrices A 
and B commute. In this case we have 

E(S, 7) = numerical phase - analytic phase 
= arctan((Im G)(Re G)-I) + (XAE + crB~), (2) 

where G(f, 7) is the amplification matrix associated with the scheme and where 
h = AT/AX, u = d~/Ay. As discussed in [7] the phase error is of importance only 
when the Fourier variables 8 and 77 are small. Thus, we neglect terms involving 
the Fourier variables in Eq. (2) of fourth order and higher. 

For the Lax-Wendroff method [5] we have 

E(E, 7) = W&3 + uBy3 - (AAt + aBq)3l + O(i? + q*) 
= &U(l - (AA)3 8” + aB(1 - (oB)“) q3 

- 3hdAB”fq” - 3hgaA*B&j] + O(t”.+ rj”). (3) 
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The stability criterion for this method is p&4, GB) < l/(S)‘!“, where p(A, 3) is the 
larger of the spectral radii of A and B. It is readily seen that if $(A) t a~(& < i; 
and < and q are positive then E is positive, i.e., there is a phase lag. This seems 
to be the smallest phase error thus far achieved for schemes that do not use data 
beyond a nine point rectangular lattice. Should one wish to change the coefkient 
cf the [” term in the expansion of the phase error then we must use a one-dimen 
sional operator that requires more than three mesh points at the previous time 
step. In particular if we wish E(<, 11) to be of fourth order for all < and ‘I;’ then we 
choose a higher order method which entails using mesh points beyond the nine 
point lattice. However, it is possible to force E(f, 7) to be of fourth order kr 
particular vaiues of the Fourier variables [, ;?. A logical choice is to minimize the 
phase error when 4 = 7. When 8 = q the phase error for the Lax-VVecdroS 
method becomes (assuming as before that A and 3 commute) 

E(C, [) = (p/q[hA(l - (XAy - 3(oB)“j + oB(1 - (u.B)” - 3jhA)2)1 f o(p). (4.) 

As previously indicated within a nine point lattice we cannot introduce terms 
whose Fourier transform can be expanded with a leading term of the form e, ++ 
for small t, q. However, by considering mixed derivatives we can introduce terms 
whose Fourier transform begins with terms of the form &:” or & for f, 27 smali. 
Thus, we are able to add terms to the basic Lax-WendroE method which will 
decrease the phase error and will even be of third order for the particular case of 
t =: 7;1= Hence, we consider the scheme 

where L is the Lax-Wendroff operator, ,U is an averaging operator, and d is a 
central difference operator (both operators defined over half meshes), As with the 
original Lax-Wendroff method it is possible to add fourth order terms to increase 
the permissible time step. We note that the sign of the third order terms introduced 
in Eq. (5) is opposite that of the odd order stabilizers discussed by Eilon, Gotilieb: 
and Zwas [II], when p(hA, oB) < +. This is in agreement with our previous observa- 
ti.on that decreasing the phase error frequently also decreases the allowable time 
step. 

When the matrices A and B are constant the ampliiication matrix for the dEer- 
ence scheme (5) is 
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where 

Kl = %(l - PA” - 3a2B2) ~~ = 5~1 - a*~2 - 3p~2) (7) 

and 
a = sin(4/2) /3 = sin(r]/2). 

The phase error for this scheme is 

E(‘$, 7) = &L4&1 - A2A2M2 - q3 + dy(l - u2B2)(q2 - 53 + at4 + r3, (8) 

and, hence, 

The mixed derivative terms introduced in Eq. (5) involve cubic polynomials 
in the matrices A and B. If these matrices are not sparse then the computation 
will be time consuming. Therefore, we could consider the scheme 

wn+l = Lw" + 6,,&,2(1 - ,o(~A)~ - 3p(~B)~)(hAV/b) 

+ &,p$,2(1 - p(uB)' - 3~&4)~)(~BW6), (9) 

where p(A) denotes the spectral radius of A. With this scheme E(<, & is fourth 
order only for scalar equations. The amplification matrix for this scheme is similar 
to Eqs. (6) and (7) except that the matrices appearing in (7) are replaced by their 
spectral radii. We note that if the time step becomes large enough then the coeffi- 
cients K1 , K2: appearing in (7) can become negative there is an increase in the 
phase error. This phenomena is present in the results presented in a later chapter. 

The stability of these schemes no longer follows from the proof given by Lax 
and Wendroff. Indeed, it is not clear that the schemes as given in Eqs. (5) and (9) 
are stable for any time step. However, by adding an appropriate fourth order term 
stability can be achieved. As an example should we add the term 

-vi? “6 2w. ZY 3 O<v<i (10) 

to Eq. (5) or (9) then it is trivial to show, by a perturbation argument, that the 
scheme is stable for sufficiently small time steps. 

3. A STABLE Two STEP FAMILY OF DIFFERENCE SCHEMES 

The schemes introduced thus far have the disadvantage of being complicated 
and that it is time consuming to evaluate the matrices. In addition, it is also difficult 
to find an analytic stability condition for these methods. We, therefore, introduce 
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a family of two step methods that overcomes these difiiculties. To be sgeci&c 
consider the scheme 

where , -t < y < ), 0 < v < 6, X = AT/AX = d~/Ay. When y = 0 and :J = 13 
we have the rotated Richtmyer scheme which is an efficient algorithm (see 
Wilson [93) though with a poor phase representation 171. We note that for ah 
nonzero y the same number of function evaluations are required as For the ear-, 
ticular case of y = 0. 

Let 5 and 71 be the Fourier variables and let 

a = sin <,I2 /3 = sin 7112 

Then, the amplification matrix for this family is 

G(& 7)) = I + 2iAM(l - ,y (I - py - 4yo$) - Zh”M’ - 1&m?p, (i2) 

The amplification matrix G depends only on the matrix M and not on the matrices 
A and B individually; hence, we can invoke the spectral mapping theorem, We 
denote the spectral radius of G by g and that of M by m. Then, from the spectral 
mapping theorem we have that 

where new equation (14) is a scalar equations. From Eq. (14) 

We also have from Eq. (13) that 

m < p(A, B)(I a 1 (1 - pP)1/2 f / /I j (1 - LY~)~!%)~ (is) 

where as before p(A, B) denotes the larger of the spectral radii of the matrices A 
and B. 

A necessary condition for stability is that / g lo_ < 1 or by using Eq. (15) that 

16~2f12~(16a3/i% -- 2) + 4[16va2p” - 1 + ((1 - ix’?)l/‘2 (1 - n)ljn - 4yaf>“j $n$ 



256 GOTTLIEB AND TURKEL 

which is a quadratic inequality in (hm)“. If Am = 0 the inequality is satisfied since 
01, /3, v are all less than or equal to 1 and v is always positive. Therefore, the 
inequality is true for (hm) < sO(ol, /3) for some s, . Thus, if the inequality is satisfied 
for a particular value of Am then it is also satisfied for all smaller values of hr~. 

Before we try to find s,,(ol, /3) in particular cases we wish to make a general 
observation. The terms involving v are 

16a2/3”v(l6ol”pezJ - 2 + 4&?). 

If 2@m)” > 1 it then obviously pays to choose v = 0 in order to improve the 
inequality (17). However, we shall shortly show that for v = 0 we have that 
(hn?)2 < + for all y. Hence, (Xrrz)” < 4 for all y and all v. Since this limit is obtained 
by the rotated Richtmyer method y = 0, v = 0, it shows that this method is 
optimal within the family of schemes that we are presently considering. 

Since inequality (17) is quite difficult to analyse we shall examine several special 
cases. When the viscosity coefficient v is zero the constant term in the inequality 
vanishes and we immediately can reduce (17) to 

(hm)2 < 1 - ((1 - ,2)1/e (1 - pe)lle - 4y# 

or by using inequality (16) we have that (18) is certainly satisfied if 

(18) 

1 - ((1 - ,2)w (1 - 132)1/8 - 4yap)2 
GMA~ B)) = -g& ([ 01 j (1 - p31/2 + / p j (1 - ,2)l/e)z = 1 - 4 ’ y ’ , 2 (19) 

-1 a<1 

where the minimum for y positive occurs when CY and fi are negative and for y 
negative the minimum occurs when 01, p are positive. Also, when A = &B this 
condition is also necessary. Thus, for general A and B the necessary condition for 
stability, when v = 0, is 

$(4 B) < ($(I - 4 I y W2, -)<y<& (20) 

Hence, as we have previously indicated, the largest time step occurs when y  = 0 
and in that case $(A, B) = 1/(2)‘p. Also, as previously, shown this cannot be 
improved upon by choosing a nonzero viscosity coefficient. 

However, for nonzero y we can improve the stability condition by introducing 
viscosity. For example if y = -$ then formula (20) indicates that the scheme is 
unconditionally unstable. We shall now show that with v = & the scheme is 
stable with @(A, B) < $. If we substitutes v = + and y = -S into (17) then we 
get the inequality 

ct2p2(a2p - 1) + [2012/P - 1 + ((1 - 012)1/2 (1 - #82)1/2 + CYp>‘](Xur2>” + (Xm)” < 0. 
(21) 
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From our previous remarks it follows that it is sutKcitnt to show that this inequaiity 
bolds for a particular value of Xnz and it then follows that it is true for aI1 smaiier 
values of /%?I, Choosing ;\[ = 4 inequality (21) becomes 

4&y(oi2pL - 1) + $[ga’p - 1 + ((1 - &y (1 - pjv + ap)“j + ,$ < 0, $22) 

Furthermore.. we need only consider a, fl positive since the left-hand side of (22) 
is more negative for ‘2, ,O negative. In that casn G c nequahty (22) is equivalent ?rc 

&[(a” - p,* + 8(a” - p”)‘] + (2 + B”,(c$l,[(~i~ + $‘i - 4ayE3 3 0. (23-b ; 

But the first term is the sum of squares and is always positive while the second 
term is positive by the Schwarz inequality. Hence (22) is verified and so we have 
shown that we have a stability condition that 

Xp(A, B) < 4 when y = -$, v = g. 

The phase error associated with (11) is 

E((, q) = Q[hA<3 + h&l3 - @A( f hBq)“] + ~4(~~~” + y5”~) 

+ WPq + ySq2) t O(P + T’). (24) 

We see that if y is positive then the phase lag is large for 5, ‘1 positive whiie if y 
is negative the phase lag is large for % positive and 7 negative. Thus, nothing is 
gained over the rotated Richtmyer method which itself has a poor phase represen- 
tation. 

4. A NONLINFAR SCHEME 

The general conclusion is that with the family of schemes considered in (I h) 
the rotated Richtmyer scheme is the best. As previously noted when y is positive 
there are difficulties when f and 7 have the same sign while when y is negative 
there are difficulties when [ and 7 have differing signs. Another approach to this 
problem is to examine the special case y = &=&. When y I= $Ei+l/z,j+l/2 is approxi- 
mated by +(:v~+~,,~+~ + wi,jj while when y = -$ it is approximated by 
g(ll’i+l,j t I+y<,j+l)- Ob viously in either case trouble will occur if the wave is 
traveling perpendicular to the line connecting the points used in the approximation. 
The obvious solution is to introduce a nonlinearity that will determine the sign 
of y depending on the direction of the wave. One way to accomplishing this is 
to consider the scheme 



258 GOTTLIEB AND TURKEL 

For the purposes of the Fourier transform we replace sign&pVu-) 1 6,&w 1 by 
sign(Re ~~FLyu~) sign(Re 6,6,w) 6,6,w; these formulations coincide when w  is real. 
With this replacement we can formally construct an amplification matrix which 
has the form 

G(& -q) = I + 2dM((1 - c?)~/~ (1 - pa)rjz - 4y / 01 1 1 p I) - 2A2M2 - l&2/32, 

(26) 

where, as before, 

M = Aoc(1 - ,P)l/” + B/3(1 - a2)l12. 

Using the same techniques as with the linear scheme we get the formal stability 
condition, for v = 0, 

$(A, B) < (&(l - 4y))ll’. (27) 

Hence for y negative we have a large permissable time step than that allowed by 
the linear scheme as given in Eq. (20). In fact with y = - $ we now have a maximal 
allowable time step without using a Strang type splitting scheme. The phase error 
for the nonlinear scheme is given by 

As y approaches 3 the phase error decreases though by (27) the permissible time 
step also decreases. This is in agreement with what is found in many schemes, that 
improved phase representation frequently goes together with a small permissible 
time step (the Strang splitting method L,L., is an exception to this rule). 

5. RESULTS 

As a computational test of the schemes considered we have chosen a sample 
problem from dynamic elasticity. This problem has the advantage of having 
constant coefficients and a known analytic solution but it is still a realistic non- 
trivial system of equations with noncommuting matrices A and B. In addition 
the x and y directions are not treated symmetrically. Therefore, there is no built 
in bias towards the modified Lax-Wendroff method for which the phase error is 
fourth order when 5 = 7. 
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The equations considered are those of linear elasticity, i.e:, 

where pr A, p are positive constants. The particular values chosen for the test 
problem are p = 0.175, X = 0.3, ,u = 0.2. These equations are integrated over 
the unit square 0 < x < 1. 0 < y < 1. The solution is assumed to be periodic 
in the x variable with a period of 1. p, 71I , ?-ep are symmetric about the axis y = 9 
while ~1 and 7P2 are antisymmetric. At the boundary 2: = 1 we use the free surface 
condition that 112 = 7%3 = 0. 

A particular solution to this problem is 

where 

hence, oi = a(u), /3 = ,/3(v). 
The boundary condition at p = 1 is satisfied if u is a solution to the transcen- 

dental equation 

tan /I 
tan 01 

+ 4&x/3 
(5” _ B”)” = 0. (33) 
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The particular solution chosen was the third mode which yields v approximately 
equal to 1.6975 for the parameters used. When the initial conditions are chosen 
using Eq. (30) with t = 0, then the system (30) is the unique solution to the problem 
(see [6] and [7] for further details about this problem). 

In Tables I and II we compare the various schemes over the time interval 

TABLE I 

Scheme I CFL WCHG Phase 

LW 0.0 0.314 0.0957 
MAT 0.0 0.314 -0.0402 
SPEC 0.0 0.314 -0.002 
LW 0.0 0.471 0.1299 
MAT 0.0 0.471 -0.0238 
MAT 0.01 0.471 0.0720 
SPEC 0.0 0.471 0.1061 
LW 0.0 0.754 -0.7484 
LW 0.05 0.754 -0.0639 
LW 0.0625 0.754 unstable 
MAT 0.0 0.754 -0.946 
SPEC 0.0 0.754 0.4639 

0.030 
0.0057 
0.012 
0.027 
0.0079 
0.0077 
0.024 
0.020 
0.018 

0.0148 
0.057 

TABLE II 

Two Step Phase Improvement as Given in Eq. (34) 

Y CFL WCHG Phase 

0.0 0.314 -0.0580 
0.01 0.314 0.0876 
0.0 0.471 -0.1122 
0.02 0.471 0.0898 
0.0 0.754 unstable 

0.0014 
0.0012 

-0.0013 
-0.0017 

required for the analytic solution to complete four periods. The time step was kept 
constant throughout the time integration. The time steps were chosen so that a 
complete period required an integer number of time steps. Thus the CFL numbers 
(CFL = GW,u)(@ + W/P) 1/2 are not simple fractions. With a CFL condition > 
of about 0.471 160 time steps are needed to complete the four periods. Let WCHG 
be a measure of the energy growth in the numerical solution, i.e., 

WCHG = 
initial energy - energy at time t 

initial energy , 
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where the elastic energy of the system is given by 

WCHG measures the L stability of the solution. The analytic solution has the 
property that the energy is independent of time, i.e.: WC G = 0 for all time 
Computationally, when WCHG is negative then the norm of the numericaf 
solution is increasing in time which indicates some instability. When the energy 
has doubled within the four periods we label the .scheme as unstable for thai CFL 
number. 

Let PHASE be a measure of the phase error in the numerical so!ution, i.e.. 

PHASE := 
pos(analytic) - pos(computaiionai) 

pos(analyric) 

where pos denotes the position of a particular zero of the variable I!. The com- 
putational zero is calculated by linear interpolation on each y coordinate iline 
and then the result is averaged over all these y coordinate lines. -4 10 x ‘16 mesh 
was chosen for this problem. However, extra coordinate lines were added for 
convenience in handling the periodic and symmetry boundary conditions. “We 
have also included a fourth order viscosity with a coe%cient v as given by Eqs. ($I;, 
(IO), and (25). For the nonlinear schemes we have also lisred the parameter y 
that appears in Eq. (25). 

Table H gives a comparison of the Lax-Wendrof’i method (LW) together with 
the improved matrix version (MAT) as given by Eq. (5) and also the improved 
version with the matrices in Eq. (7) replaced by their respective spectra: radii 
(SPEC) as given in Eq. (9) 

For the dynamic elastic equations the relevant powers of’ the matrices A and B 
are sparse and in fact are very close in form to the original matrices A and B. 
Hence Iittle computer time is added in the evaluation of these matrices. However, 
this need not be true for all physically relevant equations. As seen in Table I rile 
spectral form of the improvement reduces the phase lag for s&cient!y smah 
time steps. However, with a CFL number of about 3 there is lktua!ly no imprcve- 
ment over the Lax-Wendroff method. When the time step is chosen large enough 
the third order terms included in Eq. (9) become nega:ive. This improves the 
stability of the scheme but increases the phase error. With the matrix form of tie 
improvement the decrease in phase error is much more noticeable. Even with a 
time step of CFL = 0.471 the phase error of MAT is Iess than one-third of &e 
phase error for the Lax-Wendroff method. Thus, in this case the extra computa- 
tional &Tort is compensated for by increased accuracy. 

Both forms of improvement discussed above work better v&h small time steps. 
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As At increases the factors Kl and & in Eq. (7) become less positive and hence 
produce less of a phase error reduction. Furthermore, even with our improvement 
there still exists a phase lag of almost one percent after four periods. It therefore 
seems advisable to further decrease the phase lag by eliminating the negative 
terms in K1 and Kz . Thus, we replace Eqs. (5) and (9) by the simpler scheme 

,.p+l = LW" + @/6)8&4,"Aw + (~/6)6&3,~Bw - v8,%.g2w, (34) 

where, as before, L is the Lax-Wendroff operator. The amplification matrix for 
this scheme with v = 0 is still given by Eq. (6) where now both KI and K2 are 
equal to 8. The phase error for this scheme is given by 

E((,q) = #&(l - hzA2)(ef2 - 7") + oBq(l - c2B2)(+ ~- p) 
- 3hutyAB@AE + uB$l + 0(-P + 173. (35) 

We note that at E = 7 the phase error is no longer of fourth order. Nevertheless, 
this scheme seems to yield lower phase errors than the scheme given in Eq. (5). 
Possibly, the phase gain exhibited in Eq. (34) balances the higher order phase lag 
which until now has been neglected. As seen in Table II the phase lag for this 
new scheme is lower by a factor of greater than 10 over the Lax-Wendroff method. 
Also in contrast to the other improvements this scheme maintains a very small 
phase error as the time step increases. 

The scheme introduced in (34) has the additional advantage that it can be 
written as a two step method. Thus, considering the divergence free form given 
in Eq. (1’) we present a modification of the two step method in Thommen [8]. 

The linearized version of these equations is identical with (34) and so Eq. (36) 
also produces small phase errors. 

In Table III we show a comparison between different members of the nonlinear 
scheme as given by Eq. (25). For the sake of comparison we have also included 
the Burstein scheme (see [7]) which is denoted by a B in the first column. As 
expected the phase error with y = -4 or y = 0 (rotated Richtmyer) is quite large 
and hence these schemes should not be used in calculations of the phases of waves. 
However, with y = -2 there is the compensating feature of a maximal permissible 
time step coupled together with few function evaluations. This should make the 
scheme very competetive for problems where only steady state solutions are of 
importance. 
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TABLE III 

Y v CFL WCHG Phase 

-0.25 0.0 0.471 0.2143 
0.0 0.0 0.471 0.1714 
5.125 0.0 0.471 0.0478 
B 0.0 0.471 0.0345 

0.248 0.0 0.471 -0.1784 
0.248 0.0625 0.471 0.4849 

-3.25 0.0 0.754 0.3158 
0.5 0.0 0.754 3.2086 
0.125 0.0 0.754 0.057 1 
B 0.0 0.754 --0.027e 

0.248 0.0625 0.754 0.1691 
-3.25 0.0 0.942 0.2419 

0.3 0.0 0.942 --OS203 
0.0 0.0625 0.942 0.0835 
0.125 0.0625 0.942 unstable 
B 0.0625 0.942 unstable 

0.096 
0.068 
0.053 
0.047 
0.033 
0.037 
0.088 
0.063 
0.049 
0.042 
0.028 
0.077 
0.052 
0.059 

- 
- 

As we increase the parameter y the phase error decreases and at y = f we have 
phase errors close to that of the Em-stein scheme though with a slightly larger 
time step. Wowever, as shown in [7], the Burstein scheme is unstable for some 
choices of the matrices A and B but is stable for the dynamic elastic equations, 
With y close to $ the phase error is almost as small as that given by the Lax- 
WendrofT method in agreement with our previous analysis. Thus, the nonlinear 
scheme offers a useful general purpose method with the option that there exists 
a free parameter y: which can be chosen for the individual problem to either 
maximize the permissible time step or else to achieve a smaii phase error at the 
expense of a small time step. 

6. CONCLUSIOK§ 

Two new schemes of second order have been presented for hyperbolic systems 
of equations in two space dimensions. The first method is a modification of the 
Lax-Wendroff method. Adding appropriate third order mixed derivatives one 
can insure that the phase error is of fourth order for the special case that the two 
Fourier variables f and 17 are equal. Numerical tests indicate that the phase error 
with this method is about one quarter that of the Lax-Wendroff method; while 
the Lax-Wendroff method has as small a phase error as any other nine point 
scheme (see 171). Replacing the powers of the matrices that appear in the correction 
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term, by their spectral radii yields a scheme which small phase errors only for 
sufficiently small time steps and hence there is apparently little benefit compensating 
for the additional computational effort. Should one eliminate the powers of the 
matrices that appear in the correction term then the scheme can be written as a 
two step method with only the vectors f and g appearing and not the matrices A 
and B (Eq. (36)). The phase factor for this scheme displays a phase gain rather 
than the usual phase lag. In computational tests the phase error for this scheme 
was smaller than even that of the matrix form of the correction term. Thus, 
Eq. (36) requires little more work than the two step Thommen scheme but yields 
a phase error that is smaller by a factor of ten over any other nine point scheme. 
Hence, the phase error for this scheme is comparable with that of higher order 
methods but requires less computational time and even more important this 
method uses only a nine point lattice and so presents fewer problems near bounda- 
ries especially curved boundaries. The scheme, Eq. (36)? seems to be mildly 
unstable and requires a small fourth order viscosity to stabilize it. 

The second method considered is actually a family of schemes. The linear 
version of this method has a large phase error and small allowable time steps 
compared with the rotated Richtmyer method. Therefore, a nonlinear version of 
the method was introduced and an amplification matrix formally constructed. 
Choosing the free parameter, y, equal to t yields a scheme which allows (formally) 
maximal time steps for an explicit scheme but produces a large phase error. 
Choosing y slightly larger than -$ yields a scheme with small phase error but 
also with a small permissible time step. For general problems one would choose 
an intermediate value of y (e.g., approximately -&) to achieve a moderate phase 
error coupled with a reasonable time step. 

Wilson [lo] has observed that the most efficient schemes, in terms of speed, 
are the Strang splitting methods. It should be noted that with y = $ no additional 
evaluations of the vectors f and g are required over the rotated Richtmyer method, 
y = 0. Yet the allowable time step is greater by a factor of (2)‘12. Therefore, this 
particular method, i.e., Eq. (25) with y = $ would be the most efficient nine point 
second order scheme presently available. Hence, for problems that do not involve 
wave propagation, this method is to be recommended. 

This two step family of schemes is another demonstration of the benefits that 
can accrue by the introduction of nonlinearities into a linear scheme, even for 
linear problems. Fromm [3] has also introduced nonlinearities for the purpose of 
reducing phase errors. Similarly Boris and Book [l], Harten and Zwas [4], and 
Van Leer [9] have introduced nonlinearities into the difference schemes in order 
to preserve monotonicity properties for the numerical solution. There is, therefore, 
an important need for additional theoretical work justifying the convergence of 
nonlinear schemes, at least for linear differential equations, under suitable 
hypotheses. 
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